FAIRMAT
Publications

Scientific Publications

 


 

  1. L.M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C. Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S. Dwaraknath, Á. Fekete, J. Kermode, C.T. Koch, M. Kühbach, A.N. Ladines, P. Lambrix, M.O. Lenz-Himmer, S. Levchenko, M. Oliveira, A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T. Sheveleva, C. Su, D. Usvyat, O. Valsson, C. Wöll, and M. Scheffler

    Shared Metadata for Data-Centric Materials Science

    Preprint , (2022).  [arXiv]
  2. C. Draxl, M. Kuban, S. Rigamonti, and M. Scheidgen

    Challenges and perspectives for interoperability and reuse of heterogenous data collections

    Section 4.1 in H. J. Kulik, et al.
    Roadmap on Machine Learning in Electronic Structure

    Electronic Structure 4, 023004 (2022). [DOI]
  3. M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl

    Density-of-states similarity descriptor for unsupervised learning from materials data

    Sci. Data 9, 646 (2022). [DOI] [arXiv]
  4. M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C.Felser, M. Greiner, A. Groß, C. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl

    FAIR data enabling new horizons for materials research

    Nature 604, 635 (2022). [DOI] [arXiv]
  5. A. M. Teale, T. Helgaker, A. Savin, C. Adamo,  B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings,  N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling,  T. Gould,  S. Grimme, O. Gritsenko, H. J. A.Jensen, E. R. Johnson, R. O. Jones, M. Kaupp,  A. M. Köster,  L. Kronik,  A. I. Krylov, S. Kvaal,  A. Laestadius, M. Levy, M. Lewin,  S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew,  K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining,  P. Romaniello, A. Ruzsinszky,  D. R. Salahub, M. Scheffler,  P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich,  A. Vela, G. Vignale, T. A. Wesolowski, and X. W. Yang

    DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science

    Phys. Chem. Chem. Phys. , (2022). [DOI] [arXiv]
  6. M. Kuban, Š. Gabaj, W. Aggoune, C. Vona, S. Rigamonti, and C. Draxl

    Similarity of materials and data‑quality assessment by fingerprinting

    MRS Bulletin Impact section

    MRS Bulletin 47, 1 (2022). [DOI] [arXiv]
  7. Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo, S. Wuttke, P. Friederich, and M. Tsotsalas

    MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning

    Angew. Chem. Int. Ed. 61, (2022). [DOI]
  8. M. Jalali, M.  Tsotsalas, and C. Wöll

    MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis

    Nanomaterials 12, 704 (2022). [DOI]

 

Press